Computational Modeling Toward Understanding Agonist Binding on Dopamine 3

نویسندگان

  • Yaxue Zhao
  • Xuefeng Lu
  • Chao-yie Yang
  • Zhimin Huang
  • Wei Fu
  • Tingjun Hou
  • Jian Zhang
چکیده

The dopamine 3 (D3) receptor is a promising therapeutic target for the treatment of nervous system disorders, such as Parkinson's disease, and current research interests primarily focus on the discovery/design of potent D3 agonists. Herein, a well-designed computational protocol, which combines pharmacophore identification, homology modeling, molecular docking, and molecular dynamics (MD) simulations, was employed to understand the agonist binding on D3 aiming to provide insights into the development of novel potent D3 agonists. We (1) identified the chemical features required in effective D3 agonists by pharmacophore modeling based upon 18 known diverse D3 agonists; (2) constructed the three-dimensional (3D) structure of D3 based on homology modeling and the pharmacophore hypothesis; (3) identified the binding modes of the agonists to D3 by the correlation between the predicted binding free energies and the experimental values; and (4) investigated the induced fit of D3 upon agonist binding through MD simulations. The pharmacophore models of the D3 agonists and the 3D structure of D3 can be used for either ligand- or receptor-based drug design. Furthermore, the MD simulations further give the insight that the long and flexible EL2 acts as a "door" for agonist binding, and the "ionic lock" at the bottom of TM3 and TM6 is essential to transduce the activation signal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Receptor conformations involved in dopamine D(2L) receptor functional selectivity induced by selected transmembrane-5 serine mutations.

Although functional selectivity is now widely accepted, the molecular basis is poorly understood. We have studied how aspects of transmembrane region 5 (TM5) of the dopamine D(2L) receptor interacts with three rationally selected rigid ligands (dihydrexidine, dinapsoline, and dinoxyline) and the reference compounds dopamine and quinpirole. As was expected from homology modeling, mutation of thr...

متن کامل

Novel Analogues of (R)-5-(Methylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (Sumanirole) Provide Clues to Dopamine D2/D3 Receptor Agonist Selectivity

Novel 1-, 5-, and 8-substituted analogues of sumanirole (1), a dopamine D2/D3 receptor (D2R/D3R) agonist, were synthesized. Binding affinities at both D2R and D3R were higher when determined in competition with the agonist radioligand [(3)H]7-hydroxy-N,N-dipropyl-2-aminotetralin (7-OH-DPAT) than with the antagonist radioligand [(3)H]N-methylspiperone. Although 1 was confirmed as a D2R-preferent...

متن کامل

Agonist and inverse agonist activity at the dopamine D3 receptor measured by guanosine 5'--gamma-thio-triphosphate--35S- binding.

In this study, the ligand-receptor-G protein interactions of the dopamine D3 receptor expressed in Chinese hamster ovary cells were investigated using guanosine 5'-[gamma-thio]triphosphate-[35S] ([35S]GTPgammaS) and receptor binding experiments. Dopamine stimulated the [35S]GTPgammaS binding in a guanine nucleotide, magnesium and sodium-dependent manner. Dopamine and quinpirole produced maximal...

متن کامل

Site-directed mutagenesis of the human dopamine D2 receptor.

Based on amino acid sequence and computer modeling, two conflicting three-dimensional models of the dopamine D2 receptor have been proposed. One model (Dahl et al., 1991, Proc. Natl. Acad. Sci. USA 88, 8111) suggests that dopamine interacts with aspartate 80 of transmembrane (TM) 2 and asparagine 390 of TM6 with the transmembranes arranged in a clockwise manner, while a second model (Hibert et ...

متن کامل

Investigation of D2 Receptor–Agonist Interactions Using a Combination of Pharmacophore and Receptor Homology Modeling

A combined modeling approach was used to identify structural factors that underlie the structure-activity relationships (SARs) of full dopamine D₂ receptor agonists and structurally similar inactive compounds. A 3D structural model of the dopamine D₂ receptor was constructed, with the agonist (-)-(R)-2-OH-NPA present in the binding site during the modeling procedure. The 3D model was evaluated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 50 9  شماره 

صفحات  -

تاریخ انتشار 2010